Math 445 - David Dumas - Spring 2019

Homework 5

Due Monday, February 25 in class (1:00pm)

(—) From the textbook: 20.4a^{*}, 20.5, 20.6, 21.2

* Note this is actually nine separate questions: For each of three topologies, and for each of three functions f, g, h, you need to indicate whether it is continuous and give a proof. Please organize your answer so that f, g, and h are discussed separately. Use relations between the given topologies (finer/coarser) to make your proofs as concise as possible. Finally, please include in your answer a table giving all of the yes/no continuity answers in the following format:

	prod	unif	box
f	?	?	?
g	?	?	?
h	?	?	?

(P1) Let (X,d) be a metric space.

- (a) Define $d_2: X \times X \to \mathbb{R}$ by $d_2(x, y) = (d(x, y))^2$. Is d_2 a metric on X? Give a proof or a counterexample.
- (b) Define $d_{\frac{1}{2}}: X \times X \to \mathbb{R}$ by $d_{\frac{1}{2}}(x, y) = \sqrt{d(x, y)}$. Is $d_{\frac{1}{2}}$ a metric on X? Give a proof or a counterexample.
- (c) If the answer to any of the previous parts was "yes", determine whether the metric topology associated to this new metric is coarser, finer, or equal to the one from *d*.
- (P2) Suppose (X,d) is a metric space and $f: X \to X$ is a function such that $d(f(x), f(y)) \le d(x, y)$ for all $x, y \in X$. Show that f is continuous.