Math 445 - David Dumas - Spring 2019

Midterm Exam Solutions

(1) Is \mathbb{R} connected in the lower limit topology?

Solution: No. We show $U=(-\infty, 0)$ and $V=[0, \infty)$ gives a separation. It is evident that U and V are disjoint and their union is \mathbb{R}, so we need only show they are open. Since $V=\bigcup_{n \in \mathbb{N}}[0, n)$ describes V as a union of open sets in the lower limit topology, V is open. Similarly $U=\bigcup_{n \in \mathbb{N}}[-n, 0)$ is a union of open sets, hence open.
(2) Consider these topologies on $\mathbb{Z} \times \mathbb{Z}$:

- The cofinite topology (on the set $\mathbb{Z} \times \mathbb{Z}$)
- The product of the cofinite topology on \mathbb{Z} and the cofinite topology on \mathbb{Z} Are these topologies the same? Is one finer than the other?

Solution: For brevity we refer to the given topologies as the cofinite topology and the product topology, respectively.

These topologies are not the same: The set $\{1\} \times \mathbb{Z}$ is closed in the product topology, but since it is infinite and not equal to \mathbb{Z}^{2}, it is not closed in the cofinite topology.

The product topology is finer. Suppose that U is open in the cofinite topology. If $U=\mathbb{Z}^{2}$, then it is of course also open in the product topology. Otherwise U is the complement of a finite set, $U=\mathbb{Z}^{2}-\left\{f_{1}, \ldots, f_{n}\right\}$. A set that is the complement of a single point, $\mathbb{Z}^{2}-\{(x, y)\}$, is open in the product topology since it is the union $((\mathbb{Z}-$ $\{x\}) \times \mathbb{Z}) \cup(\mathbb{Z} \times(\mathbb{Z}-\{y\}))$, and both sets in this union are basis elements of the product topology. Now $U=\cap_{i=1}^{n}\left(\mathbb{Z}^{2}-\left\{f_{i}\right\}\right)$, which is a finite intersection of sets that are open in the product topology, so U itself is open in the product topology as well.
(3) Let \mathscr{T} denote the topology on \mathbb{R} generated by the basis consisting of intervals $[a, b)$ with rational endpoints, i.e. where $a, b \in \mathbb{Q}$. Determine the closure of $(\sqrt{2}, \sqrt{3})$ in this topology.*

Solution: The closure is $[\sqrt{2}, \sqrt{3}]$. Since the closure of a set is the union of the set and its limit points, this is equivalent to showing that $\sqrt{2}$ and $\sqrt{3}$ are limit points of $(\sqrt{2}, \sqrt{3})$, and that no element of $\mathbb{R}-[\sqrt{2}, \sqrt{3}]$ is a limit point of $(\sqrt{2}, \sqrt{3})$.

If x is a real number that is not in $[\sqrt{2}, \sqrt{3}]$, then either $x<\sqrt{2}$ or $x>\sqrt{3}$. If $x<\sqrt{2}$, then there exist rational numbers p, q with $p \leq x<q<\sqrt{2}$. Thus $[p, q)$ is a neighborhood of x disjoint from $(\sqrt{2}, \sqrt{3})$, and x is not a limit point. Similarly, if $x>\sqrt{3}$ then there exist rational numbers p, q with $\sqrt{3}<p \leq x<q$. Then $[p, q)$ is a neighborhood of x disjoint from $(\sqrt{2}, \sqrt{3})$, hence x is not a limit point.

To show that $\sqrt{2}$ is a limit point, it suffices to show that every basis element containing $\sqrt{2}$ intersects $(\sqrt{2}, \sqrt{3})$. Let $U=[p, q)$ be such a basis element, where $p, q \in \mathbb{Q}$. Since $q>\sqrt{2}$ we have that $[p, q) \cap(\sqrt{2}, \sqrt{3})$ is nonempty.

Similarly, to show that $\sqrt{3}$ is a limit point, let $U=[p, q)$ a basis element containing $\sqrt{3}$. Since p is rational and $\sqrt{3}$ is not, we must have $p<\sqrt{3}$. But then $[p, q) \cap(\sqrt{2}, \sqrt{3})$ is nonempty.

Remark: Only in showing $\sqrt{3}$ is a limit point did we use the restriction to rational endpoints in an essential way. In the ordinary lower limit topology, $\sqrt{3}$ is not a limit point of $(\sqrt{2}, \sqrt{3})$, because for example $[\sqrt{3}, 100)$ is a neighborhood of $\sqrt{3}$ disjoint from $(\sqrt{2}, \sqrt{3})$. A proof similar to the one above would show that the closure of $(\sqrt{2}, \sqrt{3})$ in the ordinary lower limit topology is $[\sqrt{2}, \sqrt{3})$.
(4) Is $[0,1]^{\mathbb{N}}$ a closed set in $\mathbb{R}^{\mathbb{N}}$ with respect to the uniform topology?
(Partial credit will be given for just writing the definition of the uniform metric on $\mathbb{R}^{\mathbb{N}}$.)
Solution: The uniform metric is $\bar{\rho}(x, y)=\sup _{i} \min \left(\left|x_{i}-y_{i}\right|, 1\right)$.
The set $[0,1]^{\mathbb{N}}$ is closed. To show this, we must show that the complement is open. Let x be a point not in $[0,1]^{\mathbb{N}}$. Then there exists $i \in \mathbb{N}$ such that $x_{i} \notin[0,1]$. Since the complement of $[0,1]$ is open in the standard topology of \mathbb{R}, there exists $\varepsilon>0$ so that $\left(x_{i}-\varepsilon, x_{i}+\boldsymbol{\varepsilon}\right) \cap[0,1]=\emptyset$. We can also take $\varepsilon<1$, since decreasing ε preserves this property.

We claim $B_{\bar{\rho}}(x, \varepsilon) \subset\left(\mathbb{R}^{\mathbb{N}}-[0,1]^{\mathbb{N}}\right)$. If $y \in B_{\bar{\rho}}(x, \varepsilon)$ then $\bar{\rho}(x, y)<\varepsilon$, so $\min \left(\mid x_{i}-\right.$ $\left.y_{i} \mid, 1\right)<\varepsilon<1$, which gives $\left|x_{i}-y_{i}\right|<\varepsilon$, i.e. $y_{i} \in\left(x_{i}-\varepsilon, x_{i}+\varepsilon\right)$, and thus $y_{i} \notin[0,1]$. This shows $y \notin[0,1]^{\mathbb{N}}$.

We have shown that the complement of $[0,1]^{\mathbb{N}}$ contains a ball about each of its points, so this complement is open, and $[0,1]^{\mathbb{N}}$ is closed.

* There was a typographical error in this problem: The original version had the endpoints of the interval switched.

