Math 445 – David Dumas – Spring 2019

Midterm Exam

Instructions:

- Complete **three** of these problems. (If you work on more than three problems which is not recommended—then only your three highest problem scores will count toward your grade.)
- Clearly label each of your solutions with the problem number.
- Each question implicitly ends with "and give a proof of your answer".
- (1) Is \mathbb{R} connected in the lower limit topology?
- (2) Consider these topologies on $\mathbb{Z} \times \mathbb{Z}$:
 - The cofinite topology (on the set $\mathbb{Z} \times \mathbb{Z}$)
 - The product of the cofinite topology on $\mathbb Z$ and the cofinite topology on $\mathbb Z$
 - Are these topologies the same? Is one finer than the other?
- (3) Let \mathscr{T} denote the topology on \mathbb{R} generated by the basis consisting of intervals [a,b) with **rational** endpoints, i.e. where $a, b \in \mathbb{Q}$. Determine the closure of $(\sqrt{2}, \sqrt{3})$ in this topology.*
- (4) Is [0,1]^N a closed set in R^N with respect to the uniform topology?
 (Partial credit will be given for just writing the definition of the uniform metric on R^N.)

* There was a typographical error in this problem: The original version had the endpoints of the interval switched.