Proposition. Let P be a principal G-bundle over M with connection form $\omega \in \Omega^{1}(P, \mathfrak{g})$. Let $\Phi: P \rightarrow P$ be the map given by $\Phi(u)=u \cdot \eta(u)$. Then

$$
\begin{equation*}
\Phi^{*}(\omega)=\operatorname{Ad}\left(\eta^{-1}\right) \circ \omega+\eta^{*} \omega_{G} \tag{1}
\end{equation*}
$$

where ω_{G} is the Maurer-Cartan form of G.
Proof. Applying the product rule to $\Phi(u)=u \cdot \eta(u)$, for $y \in T_{u} P$ we have

$$
d \Phi(y)=\underbrace{y \cdot \eta(u)}_{\mathrm{I}}+\underbrace{u \cdot d \eta(y)}_{\mathrm{II}}
$$

More precisely, term I refers to the image of y under the differential at u of the map $\Phi_{1}: P \rightarrow P$ given by $\Phi_{1}(t)=t \cdot \eta(u)$, and term II refers to the image of y under the differential of the map $\Phi_{2}: P \rightarrow P$ given by $\Phi_{2}(t)=u \cdot \eta(t)$. We calculate the terms separately.

The map Φ_{1} is simply the right action on P of the fixed element $\eta(u) \in G$. Thus

$$
\mathrm{I}=d R_{\eta(u)}^{P}(y)
$$

Recall the Ad-equivariance of connection forms: $\omega\left(d R_{a}^{P}(y)\right)=d R_{a}^{G} \omega(y)=\operatorname{Ad}\left(a^{-1}\right) \omega(y)$. Thus

$$
\omega(\mathrm{I})=\operatorname{Ad}\left(\eta(u)^{-1}\right)(\omega(y))
$$

Next, since Φ_{2} maps into a single fiber of P, the image of its differential is the infinitesimal action of some element of \mathfrak{g}. Specifically, if we write $\Phi_{2}(t)=(u \cdot \eta(u)) \cdot\left(\eta(u)^{-1} \eta(t)\right)$, then the image of y by the differential of $t \mapsto \eta(u)^{-1} \eta(t)$ at $t=u$ is X_{e} where $X=\omega_{G}(d \eta(y)) \in \mathfrak{g}$ and so

$$
\mathrm{II}=d \Phi_{2}(t)=\left(\omega_{G}(d \eta(y))\right)_{u \cdot \eta(u)}^{\sharp} .
$$

Since connection forms satisfy $\omega\left(X^{\sharp}\right)=X$, we have

$$
\omega(\mathrm{II})=\omega_{G}(d \eta(y))=\eta^{*}\left(\omega_{G}\right)(y)
$$

Combining the calculations above we find

$$
\begin{aligned}
\Phi^{*}(\omega)(y)=\omega(d \Phi(y)) & =\omega(\mathrm{I})+\omega(\mathrm{II}) \\
& =\operatorname{Ad}\left(\eta(u)^{-1}\right)(\omega(y))+\eta^{*}\left(\omega_{G}\right)(y)
\end{aligned}
$$

which is (1).

Version: This is the first version of this document, released on April 4, 2019.

