Proposition. Let P be a principal G-bundle over M with connection form $\omega \in \Omega^1(P, \mathfrak{g})$. Let $\Phi: P \to P$ be the map given by $\Phi(u) = u \cdot \eta(u)$. Then

$$\Phi^*(\omega) = \operatorname{Ad}(\eta^{-1}) \circ \omega + \eta^* \omega_G \tag{1}$$

where ω_G is the Maurer-Cartan form of G.

Proof. Applying the product rule to $\Phi(u) = u \cdot \eta(u)$, for $y \in T_u P$ we have

$$d\Phi(y) = \underbrace{y \cdot \eta(u)}_{\mathrm{I}} + \underbrace{u \cdot d\eta(y)}_{\mathrm{II}}.$$

More precisely, term I refers to the image of *y* under the differential at *u* of the map $\Phi_1 : P \to P$ given by $\Phi_1(t) = t \cdot \eta(u)$, and term II refers to the image of *y* under the differential of the map $\Phi_2 : P \to P$ given by $\Phi_2(t) = u \cdot \eta(t)$. We calculate the terms separately.

The map Φ_1 is simply the right action on *P* of the fixed element $\eta(u) \in G$. Thus

$$\mathbf{I} = dR_{\eta(u)}^P(y).$$

Recall the Ad-equivariance of connection forms: $\omega(dR_a^P(y)) = dR_a^G\omega(y) = \operatorname{Ad}(a^{-1})\omega(y)$. Thus

$$\omega(\mathbf{I}) = \mathrm{Ad}(\eta(u)^{-1})(\omega(y)).$$

Next, since Φ_2 maps into a single fiber of P, the image of its differential is the infinitesimal action of some element of \mathfrak{g} . Specifically, if we write $\Phi_2(t) = (u \cdot \eta(u)) \cdot (\eta(u)^{-1} \eta(t))$, then the image of y by the differential of $t \mapsto \eta(u)^{-1} \eta(t)$ at t = u is X_e where $X = \omega_G(d\eta(y)) \in \mathfrak{g}$ and so

$$\mathbf{II} = d\Phi_2(t) = \left(\omega_G(d\eta(y))\right)_{u \cdot \eta(u)}^{\sharp}.$$

Since connection forms satisfy $\omega(X^{\sharp}) = X$, we have

$$\omega(\mathrm{II}) = \omega_G(d\eta(y)) = \eta^*(\omega_G)(y).$$

Combining the calculations above we find

$$\Phi^*(\omega)(y) = \omega(d\Phi(y)) = \omega(I) + \omega(II)$$
$$= \operatorname{Ad}(\eta(u)^{-1})(\omega(y)) + \eta^*(\omega_G)(y)$$

which is (1).

Version: This is the first version of this document, released on April 4, 2019.