Problem Set 4

Due Monday, March 11 in class

Problems: Complete and submit two of these.

(P1) Suppose that the total space of a principal G-bundle admits a Riemannian metric that is invariant under the right G-action. Then one can define a connection (in terms of distributions) by taking H_p to be the orthogonal complement of V_p .

Apply this construction to the round metric on S^3 (the one induced on the unit sphere in \mathbb{R}^4 by the standard inner product) and the Hopf fibration $\pi : S^3 \to \mathbb{CP}^1 \simeq S^2$, which makes S^3 into a principal S^1 -bundle. Here $\pi(v)$ is the complex line spanned by v, where we identify \mathbb{R}^4 with \mathbb{C}^2 in the usual way, $(x_1, x_2, x_3, x_4) \mapsto (x_1 + ix_2, x_3 + ix_4)$). Express the connection as a Lie (S^1) -valued 1-form ω written in terms of the coordinates x_1, \ldots, x_4 of \mathbb{R}^4 , and then compute the associated curvature form Ω .

- (P2) Let *P* and *P'* be principal *S*¹-bundles over a manifold *M*. Then the Whitney sum $P \oplus P'$ is a fiber bundle over *M* with typical fiber $S^1 \times S^1$ and with a S^1 -structure. Recall that a point in $P \oplus P'$ can be identified with a pair $(p, p') \in P \times P'$ such that $\pi(p) = \pi'(p')$.
 - (a) Show that S^1 acts smoothly, freely, and properly on $P \oplus P'$ by $g \cdot (p, p') = (p \cdot g, p \cdot g^{-1})$.
 - (b) Let us denote the quotient of $P \oplus P'$ by the action as P + P'. Show that this is a principal S^1 -bundle over M, and that the operation + thus defined makes the set of principal S^1 -bundles over M into an abelian group.