Math 550 - David Dumas - Spring 2019

Problem Set 5

Due Wednesday, April 3 in class

Exercises: Work these out, but do not submit them.

(E1) Let M be a manifold and G a Lie group. For maps $f, g: M \rightarrow G$, let $f g: M \rightarrow G$ denote the pointwise product map, $(f g)(x)=f(x) g(x)$. Derive a "Leibniz rule" for the Darboux derivative, expressing $(f g)^{*}\left(\omega_{G}\right)$ in terms of $f^{*}\left(\omega_{G}\right), f, g^{*}\left(\omega_{G}\right)$, and g. Here ω_{G} is the Maurer-Cartan form.

Problems: Complete and submit two of these.

(P1) Let $\pi: P \rightarrow M$ be a principal G-bundle. A gauge transformation of P is a principal bundle map $\Phi: P \rightarrow P$ over the identity map of M, i.e. a smooth map $\Phi: P \rightarrow P$ such that $\Phi(u \cdot a)=\Phi(u) \cdot a$ for all $a \in G$ and $\pi(\Phi(u))=\pi(u)$ for all $u \in P$.
(a) Since u and $\Phi(u)$ lie in the same fiber, there exists $\eta(u) \in G$ such that $\Phi(u)=$ $u \cdot \eta(u)$. Show that the resulting map $\eta: P \rightarrow G$ is smooth and satisfies

$$
\eta(u \cdot a)=a^{-1} \eta(u) a
$$

for all $a \in G$. Equivalently, $\eta: P \rightarrow G^{\mathrm{inn}}$ is an equivariant map, where G^{inn} denotes the manifold G considered as a right G-space with the action $g \cdot a=a^{-1} g a$.
(b) Show that Φ is uniquely determined by function η, and that this gives a bijection between gauge transformations and sections of the associated fiber bundle $P\left(G^{\mathrm{inn}}\right)$.
(P2) Let $\Phi: P \rightarrow P$ be a gauge transformation (see previous problem) with associated map $\eta: P \rightarrow G$. Let H be a connection on P (specified as a distribution), with connection form $\omega \in \Omega^{1}(P, \mathfrak{g})$ and curvature form $\Omega \in \Omega^{2}(P, \mathfrak{g})$.
(a) Show that the distribution H^{Φ} given by $H^{\Phi}(u)=d \Phi_{w}\left(H_{w}\right)$, where $w=\Phi^{-1}(u)$, is also a connection on P.
(b) Show that the connection forms ω and ω^{Φ} are related by $\Phi^{*}\left(\omega^{\Phi}\right)=\omega$. Equivalently, $\omega^{\Phi}=\left(\Phi^{-1}\right)^{*} \omega$.
(c) Show that $\Phi^{*}(\omega)=\operatorname{Ad}\left(\eta^{-1}\right) \circ \omega+\eta^{*}\left(\omega_{G}\right)$.

Note: Since Φ^{-1} (the inverse diffeomorphism) is the gauge transformation corresponding to η^{-1} (the pointwise group inverse of the map η), parts (b) and (c) give a formula for ω^{Φ} : Simply replace η with η^{-1} in (c).
(P3) Let E be a vector bundle over M, and ∇ a connection on E. Let $\operatorname{End}(E)$ denote the vector bundle over M whose fiber over x is $\operatorname{End}\left(E_{x}\right)$; equivalently, $\operatorname{End}(E)=E^{*} \otimes E$. Thus if B is a section of $\operatorname{End}(E)$ and u is a section of E, then $B(u)$ is a section of E.
(a) Show that there is a connection ∇^{End} on $\operatorname{End}(E)$ defined by

$$
\left(\nabla_{X}^{\mathrm{End}} B\right)(u)=\nabla_{X}(B(u))-B\left(\nabla_{X} u\right)
$$

(b) Using $\operatorname{End}(E)=E^{*} \otimes E$, another way to form a connection on $\operatorname{End}(E)$ is to take the tensor product of the dual connection ∇^{*} and ∇. Show that this also gives $\nabla^{\text {End }}$.
(c) If A is the connection matrix of E for a given local trivialization, show that in the associated local trivialization of $\operatorname{End}(E)$ we have

$$
\nabla^{\mathrm{End}} B=d B+[A, B]
$$

where for a matrix-valued 1-form A and a matrix-valued function B we denote by $[A, B]$ the matrix-valued 1-form given by $[A, B](X)=A(X) B-B A(X)$.

