Math 550 - David Dumas - Spring 2019

Problem Set 6

Due Monday, April 15 in class

Problems: Complete and submit three of these.

(P1) We have seen that for a Lie group G and closed subgroup H, we can view G as a principal H-bundle over the homogeneous space G/H. In this problem we use P to denote the manifold G when considered as a principal bundle over G/H.

Let $\mathfrak{g}/\mathfrak{h}$ denote the quotient vector space. The action of H on \mathfrak{g} by the adjoint representation (of G, restricted to H) preserves \mathfrak{h} , and therefore induces a linear action of H on $\mathfrak{g}/\mathfrak{h}$. Using this, we can form the associated vector bundle $P(\mathfrak{g}/\mathfrak{h})$ over G/H.

Show that $P(\mathfrak{g}/\mathfrak{h})$ is isomorphic to the tangent bundle T(G/H). That is, give a map and show it is a bundle isomorphism.

(P2) Let G(k,n) denote the Grassmannian of k-dimensional subspaces of \mathbb{R}^n . For $W \in G(k,n)$, let $\Pi_W : \mathbb{R}^n \to W$ denote the orthogonal projection onto W with respect to the standard inner product on \mathbb{R}^n .

There is a vector sub-bundle τ of the trivial bundle $G(k,n) \times \mathbb{R}^n$ whose fiber τ_W over $W \in G(k,n)$ is simply $W \subset \mathbb{R}^n$.

Using the standard inner product on \mathbb{R}^n we can define a connection on τ as follows: For $W \in G(k,n)$ let $\Pi_W : \mathbb{R}^n \to W$ denote the orthogonal projection. Let *d* denote the trivial connection on $G(k,n) \times \mathbb{R}^n$. For a section *s* of τ , which is in particular a section of $G(k,n) \times \mathbb{R}^n$, define

$$(\nabla s)(W) = \Pi_W \circ ds$$

that is, $\nabla(s)$ is the orthogonal projection onto τ of the covariant derivative of *s* with respect to the trivial connection.

(a) Show that ∇ is indeed a connection on τ .

- (b) The manifold G(k,n) can be identified with the homogeneous space O(n)/(O(k) × O(n-k)), where O(j) is the space of j × j orthogonal matrices. Given U ⊂ G(k,n) and a section σ : U → O(n) of this quotient over U, describe how σ can be used to obtain:
 - (i) A local frame for τ over U, and
 - (ii) A formula for the connection matrix of ∇ relative to this frame in terms of the Maurer-Caran form $\omega_{O(n)}$.
- (P3) A smooth map $f: M \to G(k, n)$ defines a sub-bundle E_f of the trivial vector bundle $M \times \mathbb{R}^n$ by

$$E_f = \{(p, v) \mid v \in f(p)\}.$$

The map $\Pi: M \times \mathbb{R}^n \to E_f$ given by $\Pi(p, v) = (p, \Pi_{f(p)}(v))$ is a vector bundle map over id_M .

Let ∇^0 denote the trivial connection on $M \times \mathbb{R}^n$.

- (a) Given a section s of E_f define ∇^fs = Π ∘ (∇⁰s). Show that ∇^f is a connection on E_f.
 (b) How do E_f and ∇^f relate to the construction of the previous problem?