Theorem 1. Let Γ be a group that acts by homeomorphisms on spaces X and F, and where the action on X is free and properly discontinuous. Let Γ act on $X \times F$ by $\gamma \cdot (x, f) = (\gamma \cdot x, \gamma \cdot f)$. Then $(X \times F)/\Gamma \to X/\Gamma$ by $[(x, f)] \mapsto [x]$ is a fiber bundle with fiber F. Furthermore, this fiber bundle has a natural Γ -structure (where Γ is given the discrete topology).

The main fact about properly discontinuous group actions that we will use is that they give rise to regular covers. Specifically, if $b \in X/\Gamma$ and if $\pi : X \to X/\Gamma$ is the quotient map, then there is a neighborhood U of b such that $\pi^{-1}(U) = \bigcup_{\alpha \in J} V_{\alpha}$ where each V_{α} is open in X, the restriction $\pi|_{V_{\alpha}} : V_{\alpha} \to U$ is a homeomorphism, and where the action of Γ on X permutes the sets V_{α} by a transitive and free action on the index set J. We refer to U as in this condition as an *evenly covered neighborhood* of b, the sets V_{α} are the *sheets* over U, and the inverses $(\pi|_{V_{\alpha}})^{-1} : U \to V_{\alpha}$ are the *sheet maps*.

Furthermore, if $\sigma: U \to X$ is a continuous right inverse of π , for $U \subset X/\Gamma$ open, and if $b \in U$, then there exists an evenly covered neighborhood U' of b such that σ is equal to one of the sheet maps for that neighborhood. (One can take $U' = \sigma^{-1}(V_{\alpha})$ where V_{α} is the sheet containing $\sigma(b)$.)

Proof. It is easy to see that $[(x, f)] \mapsto [x]$ is a well-defined map. We denote this map by p. The map p is continuous because it is the quotient of the continuous and Γ -equivariant map $\pi_1: X \times F \to X$.

Now we construct local trivializations. Let $b \in X/\Gamma$, let U be an evenly covered neighborhood of b and let $\sigma: U \to V_{\alpha}$ be one of the sheet maps. We define a map

$$\Phi: U \times F \to (X \times F)/\Gamma$$
$$\Phi(u, f) = [(\sigma(u), f)].$$

By definition this map has the form $\Phi = \pi_{X \times F} \circ \tilde{\Phi}$ where $\tilde{\Phi} : U \times F \to X \times F$ is given by $\sigma \times \mathrm{id}_F$ and where $\pi_{X \times F} : X \times F \to (X \times F)/\Gamma$ is the quotient map. Note that $\tilde{\Phi}$ is in fact a homeomorphism onto $V_{\alpha} \times F$.

Since σ and π are continuous, we find Φ is continuous as well. The image of Φ is contained in $p^{-1}(U)$ because σ is right inverse to π , and is equal to $p^{-1}(U)$ because if $[(x, f)] \in p^{-1}(U)$ and if we define $u = \pi(x)$, then we have $\sigma(u) = \gamma \cdot x$ for a unique $\gamma \in \Gamma$ and

$$\Phi(u, \gamma \cdot f) = [(\sigma(u), \gamma \cdot f)] = [(\gamma \cdot x, \gamma \cdot f)] = [\gamma \cdot (x, f)] = [(x, f)]$$

It follows similarly that Φ is injective: If $\Phi(u, f) = \Phi(u', f')$ then $u = \pi(\Phi(u, f)) = \pi(\Phi(u', f')) = u'$, and so $[(\sigma(u), f)] = \Phi(u, f) = \Phi(u, f') = [(\sigma(u), f')]$. That is, there exists $\gamma \in \Gamma$ so that $(\sigma(u), f) = \gamma \cdot (\sigma(u), f')$. Since Γ acts freely and transitively on the fibers of π , we have $\gamma = e$ and f = f'.

Finally, Φ is an open map: It suffices to check that $\Phi(U' \times W)$ is open for U' open in U and W open in F. Since $\tilde{\Phi}$ is a homeomorphism onto $V_{\alpha} \times F$, we have that $\tilde{\Phi}(U' \times W)$ is open in $V_{\alpha} \times F$. Thus $Z = \bigcup_{\gamma \in \Gamma} \gamma \cdot \tilde{\Phi}(U' \times W)$ is a saturated open set. Since $\pi_{X \times F}(Z) = \Phi(U' \times W)$, we have shown that $\Phi(U' \times W)$ is open.

Since we have shown $\Phi: U \times F \to p^{-1}(U)$ is an open continuous bijection, it is a homeomorphism. By its definition we have that the projection $U \times F \to U$ is related to $p: p^{-1}(U) \to U$ by this map. Hence the collection of such homeomorphisms (as U varies over all evenly covered neighborhoods and σ over all sheets) gives $(X \times F)/\Gamma$ the structure of a fiber bundle with fiber F.

Finally, we verify that this atlas gives $(X \times F)/\Gamma$ a Γ -structure: If two such local trivializations are defined over $b \in X/\Gamma$, then there is an evenly covered neighborhood U' of b such that the sheet maps σ, σ' giving those local trivializations restrict to two of the sheet maps for U'. Thus there exists $\gamma \in \Gamma$ such that $\sigma'|_{U'} = \gamma \cdot \sigma|_U$. Using the definition of the local trivialization Φ given above, it is then easy to check that the associated transition function $U' \times F \to U' \times F$ is given by

$$(u,f) \mapsto (u,\gamma \cdot f).$$

Thus we find that the transition functions of the atlas of local trivializations are given by locally constant maps to Γ , i.e. by continuous maps to Γ with the discrete topology.

Version: This is the first version of this document, released on February 17, 2019.