Final Exam

(P1) Let $A \simeq S^1 \lor S^1$ be the figure-8 space shown below. Regard it as a subset of \mathbb{R}^3 by considering this drawing to be in the *xy* plane.

- (a) [5 points] Compute the homology groups $H_i(A)$.
- (b) [5 points] Compute the homology groups $H_i(\mathbb{R}^3/A)$. Note that \mathbb{R}^3/A means the quotient space where *A* is collapsed to a point.
- (P2) Let X be a CW complex with one cell of each dimension 0, 1, 2, 3, with respective names v, e, f, b (for "vertex", "edge", "face", "ball"). Thus the 1-skeleton X^1 is as shown below, and in particular is homeomorphic to S^1 .

The other cells are attached as follows:

- The 2-cell f is attached by a map $\partial D^2 \simeq S^1 \longrightarrow S^1 \simeq X^1$ of degree 5.
- The 3-cell *b* is attached by gluing the entire boundary $\partial D^3 \simeq S^2$ to the point *v*.
- (a) [5 points] Compute the homology groups $H_i(X; \mathbb{Z}/3\mathbb{Z})$.
- (b) [5 points] Compute the homology groups $H_i(X; \mathbb{Z}/5\mathbb{Z})$.
- (P3) [10 points] Let X be a simply connected space that is locally homeomorphic to \mathbb{R}^4 . Let $x_0 \in X$. Show that $X \{x_0\}$ is simply connected.
- (P4) Let's say that a space X retracts to a circle if there exists a subset $A \subset X$ that is homeomorphic to S^1 and a retraction $r: X \to A$.
 - (a) [8 points] Show that no covering space of $\mathbb{RP}^2 \times \mathbb{RP}^2$ retracts to a circle.
 - (b) [2 points] Find a covering space of $\mathbb{RP}^2 \vee \mathbb{RP}^2$ that retracts to a circle.