Math 547: Algebraic Topology I - David Dumas - Fall 2023

Final Exam

(P1) Let $A \simeq S^{1} \vee S^{1}$ be the figure-8 space shown below. Regard it as a subset of \mathbb{R}^{3} by considering this drawing to be in the $x y$ plane.

(a) [5 points] Compute the homology groups $H_{i}(A)$.
(b) [5 points] Compute the homology groups $H_{i}\left(\mathbb{R}^{3} / A\right)$. Note that \mathbb{R}^{3} / A means the quotient space where A is collapsed to a point.
(P2) Let X be a CW complex with one cell of each dimension $0,1,2,3$, with respective names v, e, f, b (for "vertex", "edge", "face", "ball"). Thus the 1 -skeleton X^{1} is as shown below, and in particular is homeomorphic to S^{1}.

The other cells are attached as follows:

- The 2-cell f is attached by a map $\partial D^{2} \simeq S^{1} \longrightarrow S^{1} \simeq X^{1}$ of degree 5 .
- The 3-cell b is attached by gluing the entire boundary $\partial D^{3} \simeq S^{2}$ to the point v.
(a) [5 points] Compute the homology groups $H_{i}(X ; \mathbb{Z} / 3 \mathbb{Z})$.
(b) [5 points] Compute the homology groups $H_{i}(X ; \mathbb{Z} / 5 \mathbb{Z})$.
(P3) [10 points] Let X be a simply connected space that is locally homeomorphic to \mathbb{R}^{4}. Let $x_{0} \in X$. Show that $X-\left\{x_{0}\right\}$ is simply connected.
(P4) Let's say that a space X retracts to a circle if there exists a subset $A \subset X$ that is homeomorphic to S^{1} and a retraction $r: X \rightarrow A$.
(a) [8 points] Show that no covering space of $\mathbb{R}^{2} \times \mathbb{R} \mathbb{P}^{2}$ retracts to a circle.
(b) [2 points] Find a covering space of $\mathbb{R P}^{2} \vee \mathbb{R} \mathbb{P}^{2}$ that retracts to a circle.

