Math 547: Algebraic Topology I – David Dumas – Fall 2023

Homework 12

Due Wednesday November 29 at 11:59pm

Instructions: Same as in Homework 2.

Problems:

- -2.2.28
- 2.2.29 (Note: a 3-manifold is a second countable space locally homeomorphic to ℝ³.
 While the problem uses this term, you don't really need to know anything about 3-manifolds to solve the problem.)
- (P1) Let $V_1, \ldots, V_n, W_1, \ldots, W_n$ be finite dimensional vector spaces over \mathbb{R} and $T_i : V_i \to W_i$ a collection of \mathbb{R} -linear maps. Suppose that for each *i* there is a choice of bases for V_i and W_i so that the matrix of T_i has integer entries.
 - (a) (4 points) Construct compact, connected spaces X, Y and a continuous map $f: X \to Y$ such that for $1 \leq i \leq n$ we have $\tilde{H}_i(X; \mathbb{R}) \simeq V_i$ and $\tilde{H}_i(Y, \mathbb{R}) \simeq W_i$ and a commutative diagram

That is, show that you can realize any such collection of finite-dimensional vector spaces and linear maps using homology with \mathbb{R} coefficients.

- (b) $\left(\frac{1}{2} \text{ point}\right)$ Show furthermore that there are infinitely many homeomorphism classes of spaces that can be used as *X* and *Y* in part (a).
- (c) $(\frac{1}{2} \text{ point})$ For any natural number *k* show there exist compact connected spaces *X* and *Y* such that there are at least *k* different homotopy classes of continuous maps $f: X \to Y$ that can be used in part (a).
- (P2) Let Σ_g denote the orientable surface of genus *g*. Show that there are infinitely many homotopy classes of maps $\Sigma_g \to S^2$.