Math 547: Algebraic Topology I – David Dumas – Fall 2023

Homework 6

Due Monday October 9 at 11:59pm

Instructions: Same as in Homework 2.

Problems:

- 1.3.12 (Note this problem talks about the *normal* subgroup generated by a certain list of elements, which is much larger than the subgroup generated by those elements. Also, you can use Proposition 1A.2 which we'll talk about in Lecture 19.)
- 1.3.15
- (P1) Suppose $G \curvearrowright X$ is an even action and that $H \subset G$ is a subgroup. It is immediate that the induced action $H \curvearrowright X$ is even as well. Show that the map $X/H \to X/G$ that takes $H \cdot x$ to $G \cdot x$ is a covering map of degree equal to the index of H in G. (This generalizes the fact that $X \to X/G$ is a covering map.)
- (P2) Describe all isomorphism classes of 4-sheeted covers of $S^1 \times \mathbb{RP}^2$. Note we don't assume the cover is connected here. Also you can use that \mathbb{RP}^2 is the quotient of S^2 by the even action of $\mathbb{Z}/2$ generated by $v \mapsto -v$.
- (P3) As discussed in Lecture 18, covering spaces of $S^1 \vee S^1$ can be described by drawing graphs with edges oriented and labeled by two symbols (e.g. *a* and *b*), subject to the condition that at each vertex there is one incoming and one outgoing edge of each label. For the covers of $S^1 \vee S^1$ described in that manner below, determine whether the covering is regular or not. If it is a regular cover, describe the automorphism group as an abstract group (e.g. cyclic, dihedral, something else) and draw a diagrams showing the action of a set of automorphisms that generate the group.

