Math 547: Algebraic Topology I – David Dumas – Fall 2023

Homework 7

Due Monday October 30 at 11:59pm

Instructions: *Same as in Homework 2.*

Problems:

- 1.2.1
- 1.2.3
- 1.2.7
- 1.2.10
- $-1.2.21^{\dagger}$

[†] For this problem, we need to introduce an operation on spaces that was described in Chapter 0 of Hatcher's book but never discussed in lecture.

If X and Y are topological spaces, the *join* X * Y is the quotient of $X \times Y \times I$ by the equivalence relation generated by:

 $(x, y, 0) \sim (x, y', 0)$ for all $x \in X$ and $y, y' \in Y$ $(x, y, 1) \sim (x', y, 1)$ for all $x, x' \in X$ and $y \in Y$

There's a discussion of this and a picture of the case X = Y = I on page 9 of Hatcher's book. I added my own sketch of the construction on the next page. And here are two intuitive descriptions that might help to clarify the construction:

- $X \times Y \times I$ is an interval of copies of $X \times Y$ parameterized by $t \in I$, which you can think of as a stack with t = 0 at the bottom and t = 1 at the top. In X * Y you modify the ends of that stack, collapsing the bottom $X \times Y$ to X and the top $X \times Y$ to Y.
- X * Y is a space that contains $X \sqcup Y$, but where there is also a line segment joining any point $x \in X$ to any point $y \in Y$; that segment is the image of $\{x\} \times \{y\} \times I$ under the quotient map $X \times Y \times I \to X * Y$.

