Math 547: Algebraic Topology I - David Dumas - Fall 2023

Homework 8

Due Monday October 30 at 11:59pm ${ }^{1}$

Instructions: Same as in Homework 2.

Problems:

- 2.1.5
- 2.1.8
(P1) Let $\mathscr{U}=\left\{U_{i}\right\}_{i \in A}$ be an open cover of a space X, where elements of the cover are labeled by elements of a set A. Suppose a total order $<$ has been specified on A (for example we might have $A=\mathbb{Z}$ with the usual ordering), making this an ordered open cover. There is a Δ-complex we can then associate to \mathscr{U}, called the nerve of \mathscr{U}, defined as follows. First, let $A^{[n]}$ denote the collection of n-tuples $\left(i_{1}, \ldots, i_{n}\right) \in A^{n}$ that are increasing, i.e. $i_{1}<i_{2}<\cdots<i_{n}$. For $I=\left(i_{1}, \ldots, i_{n}\right) \in A^{[n]}$, let U_{I} denote the intersection

$$
U_{I}=\bigcap_{k=1}^{n} U_{i_{k}}
$$

which is a (possibly empty) open subset of X. Let $K^{n}=\left\{I \in A^{[n]}: U_{I}\right.$ is not empty $\}$, so as n varies the sets K^{n} tell you which finite intersections of \mathscr{U} are nonempty.

The nerve $N(\mathscr{U})$ is a Δ-complex in which there is one n-cell for each element of K^{n+1}. If $\left(i_{0}, \ldots, i_{n}\right)$ is an element of K^{n+1} then we use these elements of A as labels for the vertices of the corresponding n-cell, denoting it $\left[i_{0}, \ldots, i_{n}\right]$. The face $\left[i_{0}, \ldots, \widehat{i_{k}}, \ldots, i_{n}\right]$ is glued to the $(n-1)$-simplex corresponding to $\left(i_{0}, \ldots, \widehat{i_{k}}, \ldots, i_{n}\right) \in$ K^{n-1}. Note that $\left(i_{0}, \ldots, \widehat{i_{k}}, \ldots, i_{n}\right)$ lies in K^{n-1} because $U_{\left(i_{0}, \ldots, \hat{i}_{k}, \ldots, i_{n}\right)}$ contains $U_{\left(i_{0}, \ldots, i_{n}\right)}$ and is thus nonempty.

Thus, in $N(\mathscr{U})$ there is a point for each open set in the cover, an edge for each pair of open sets that intersect nontrivially, a triangle for each triple that intersect nontrivially, etc.

The simplicial homology $H_{n}^{\Delta}(N(\mathscr{U}))$ of the nerve is called the Čech homology of X relative to the open cover \mathscr{U}, denoted $\check{H}_{n}(X, \mathscr{U})$. (There's also a way to take a limit over finer and finer open covers and get an object $\breve{H}_{n}(X)$ that doesn't depend on a particular open cover, but we won't use that here.)

On the next page are some pictures of finite open covers of spaces with labels taken from \mathbb{Z} (thus giving an order). In each case, compute the associated Čech homology groups in all degrees.

[^0](a)

(b)

(c) $X=S^{2} \cong$ surface of unit cube in \mathbb{R}^{3}
$Q=\left\{U_{1}, \ldots, U_{6}\right\} \quad U_{i}=$ open nod of one of the
 square faces of the cube.

of similarly for the other faces.

[^0]: ${ }^{1}$ And that's really the intended deadline this time!

