Homework 8

Due Monday October 30 at 11:59pm¹

Instructions: *Same as in Homework 2.*

Problems:

- 2.1.5
- 2.1.8
- (P1) Let $\mathscr{U} = \{U_i\}_{i \in A}$ be an open cover of a space *X*, where elements of the cover are labeled by elements of a set *A*. Suppose a total order < has been specified on *A* (for example we might have $A = \mathbb{Z}$ with the usual ordering), making this an *ordered open cover*. There is a Δ -complex we can then associate to \mathscr{U} , called the *nerve of* \mathscr{U} , defined as follows. First, let $A^{[n]}$ denote the collection of *n*-tuples $(i_1, \ldots, i_n) \in A^n$ that are increasing, i.e. $i_1 < i_2 < \cdots < i_n$. For $I = (i_1, \ldots, i_n) \in A^{[n]}$, let U_I denote the intersection

$$U_I = \bigcap_{k=1}^n U_{i_k}$$

which is a (possibly empty) open subset of *X*. Let $K^n = \{I \in A^{[n]} : U_I \text{ is not empty}\}$, so as *n* varies the sets K^n tell you which finite intersections of \mathscr{U} are nonempty.

The nerve $N(\mathscr{U})$ is a Δ -complex in which there is one *n*-cell for each element of K^{n+1} . If (i_0, \ldots, i_n) is an element of K^{n+1} then we use these elements of A as labels for the vertices of the corresponding *n*-cell, denoting it $[i_0, \ldots, i_n]$. The face $[i_0, \ldots, \hat{i_k}, \ldots, i_n]$ is glued to the (n-1)-simplex corresponding to $(i_0, \ldots, \hat{i_k}, \ldots, i_n) \in K^{n-1}$. Note that $(i_0, \ldots, \hat{i_k}, \ldots, i_n)$ lies in K^{n-1} because $U_{(i_0, \ldots, \hat{i_k}, \ldots, i_n)}$ contains $U_{(i_0, \ldots, i_n)}$ and is thus nonempty.

Thus, in $N(\mathcal{U})$ there is a point for each open set in the cover, an edge for each pair of open sets that intersect nontrivially, a triangle for each triple that intersect nontrivially, etc.

The simplicial homology $H_n^{\Delta}(N(\mathcal{U}))$ of the nerve is called the *Čech homology* of X relative to the open cover \mathcal{U} , denoted $\check{H}_n(X, \mathcal{U})$. (There's also a way to take a limit over finer and finer open covers and get an object $\check{H}_n(X)$ that doesn't depend on a particular open cover, but we won't use that here.)

On the next page are some pictures of finite open covers of spaces with labels taken from \mathbb{Z} (thus giving an order). In each case, compute the associated Čech homology groups in all degrees.

¹And that's really the intended deadline this time!

