Midterm Exam

Due Monday October 16 at 11:59pm

No collaboration ***** Consult only course notes and texts ***** See syllabus for full rules

- (P1) For a subset $K \subset S^1$, define $C(K) \subset \mathbb{R}^2$ by $C(K) = \{cv : c \ge 0, v \in K\}$. Thus C(K) is the union of all the rays from 0 in the directions of points of K.
 - (a) If *K* is finite, show that there exists a retraction $\mathbb{R}^2 \to C(K)$.
 - (b) Give an example of a closed set $K \subset S^1$ such that there is no retraction $\mathbb{R}^2 \to C(K)$ (and prove your example has this property).
- (P2) Let ℓ_1 and ℓ_2 be distinct lines in \mathbb{R}^3 . (Note that line does *not* mean linear subspace here; these lines are not required to contain the origin.) Show that $\mathbb{R}^3 \setminus (\ell_1 \cup \ell_2)$ is homotopy equivalent to either $S^1 \vee S^1$ or $S^1 \vee S^1 \vee S^1$, depending on whether or not the lines are disjoint.
- (P3) Let *X* denote the set of 2-element subsets of S^1 . We can put a topology on *X* as follows: Let *Y* be the set of ordered pairs of distinct points on S^1 , $Y = \{(a,b) \in S^1 \times S^1 : a \neq b\}$. Give *Y* the subspace topology as a subset of $S^1 \times S^1$. Finally, identify *X* with the quotient of *Y* by the equivalence relation generated by $(a,b) \sim (b,a)$, and give it the quotient topology.
 - (a) Show that the quotient map $Y \to X$ is a covering map.
 - (b) Let $A \subset X$ denote the set of 2-element subsets of S^1 that consist of diametrically opposite points (i.e. the line in \mathbb{R}^2 they determine passes through the origin). Show that *X* deformation retracts onto *A*.
 - (c) Compute $\pi_1(X)$ and describe the subgroup that corresponds to the cover $Y \to X$ in the classification of connected covering spaces.
- (P4) Give explicit examples (with proof) of the following phenomena:
 - (a) Covering maps $p: Y \to X$ and $q: Z \to X$ such that Y and Z are homeomorphic, but there is no isomorphism of covering spaces from $Y \xrightarrow{p} X$ to $Z \xrightarrow{q} X$.
 - (b) *G*-covers $p: Y \to X$ and $q: Z \to X$ (for the same group *G*) that are isomorphic as covering spaces but not isomorphic as *G*-covers.