
LECTURE 2
PYTHON REPL & SCRIPTS; ARITHMETIC

MCS 260 Fall 2021
David Dumas

COURSE BULLETINS
ASAP: Get Python + VS Code working on the
computer you intend to use (lab 1 covers this).

Homework 1 will be released Thursday a�ernoon in
Gradescope (access through Blackboard site).

Homework 1 will be due next Tuesday at 10am. I
expect it to take less than one hour.

Every worksheet is meant to prepare you for the
homework assignment of the same number.

Lecture recordings and slides are on Blackboard.

TERMINOLOGY
In this course we can treat terminal and shell as
equivalent terms for a text-based interface to your
operating system. (There's a subtle difference you
might learn about later.)

PowerShell on Windows or Terminal on Mac OS X are
examples.

In MCS 260 you will use a terminal to move around in
the file system and to run Python programs.

TERMINOLOGY
Python: the language
Python interpreter: the program you run to execute
Python code

There are actually several interpreters for Python,
including CPython (a name for the one we use), PyPy,
Jython, and others.

INTERPRETER MODES
There are two ways to use the Python interpreter

Interactive mode: Each line of code you type is
executed immediately. Used for experimentation.

Script mode: Execute Python code in a file. The
most common way to use Python.

THE PYTHON REPL
Interactive mode is also called the REPL or Read-
Evaluate-Print Loop: The interpreter Reads a line of
code, Evaluates it, and Prints the result, all in an
endless Loop.

This mode opens if you type python in the shell and
press Enter.

$ python

Python 3.8.2 (default, Jul 16 2020, 14:00:26)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more info

>>> print("MCS 260!")

MCS 260!

>>>

PLATFORM-DEPENDENCE NOTE
The name of the python interpreter may be "python"
or "python3", or possibly even something else under
unusual circumstances.

You need to know the name of the interpreter on the
system you plan to use. Try the two suggestions
above, see what works, and make note of it.

REPL pros:

Quick iteration, great while learning
Help system (covered later)

REPL cons:

Start from scratch each time
Results depend on history
Inconvenient to edit larger blocks of code
No syntax highlighting

There are alternative interactive Python interfaces
that fix some of these, but we won't use them in this

PYTHON SCRIPTS
Create a text file containing Python code, traditionally
with extension ".py" (e.g. with VS code).

Add the name of this script file a�er the interpreter
name when running Python in the terminal.

Content of hello.py:

$ python hello.py

Hello world!

$

print("Hello world!")

ARITHMETIC IN PYTHON
Python has arithmetic operators, including:

 addition and subtraction
 multiplication
 division and integer division

 exponentiation (means .)
Parentheses for grouping

Using these features alone, the Python REPL is a great
calculator.

+ -
*
/ //

** a**b a
b

>>> 1+1

2

>>> 2*130

260

>>> 1 / (1 + 1 + 1)

0.3333333333333333

>>> 2**5

32

>>> 7/2

3.5

>>> 7//2

3

>>>

ORDER OF OPERATIONS
Python mostly follows the mathematical convention
"PEMDAS" on order of operations, i.e. the following
operations are listed from highest precedence (first
evaluated) to lowest precedence (last):

P : parentheses
E : exponentiation (e.g.)
MD : multiplication, division (equal precendence)
AS : addition, subtraction (equal precedence)

Among operations of equal precedence, the le�most is
evaulated first.

2**3

PEMDAS example:

This was evaluated as

>>> 1 + 1/2**3

1.125

1 + (1/()) = 1 + (1/8) = 1.12523

INTEGER LITERALS
Python prints numbers in decimal, but in a script or
the REPL it can read them in binary, hex, or octal.

These ways of expressing an integer that are
recognized by Python are called integer literals.

>>> 0b1001

9

>>> 0xfa

250

>>> 0o775

509

Arithmetic can be done directly on literals regardless
of base:

>>> 0xfa + 2

252

>>> 0o777 + 0x12

529

>>> 5**0b10

25

FLOATING-POINT LITERALS
Python also supports an approximation of the real
number system. The approximation uses floating-
point numbers or floats.

Keep in mind that floats are an imperfect
approximation of the reals:

>>> 1.15

1.15

>>> 2.158 - 0.325

1.833

>>> 0.1+0.2

0.30000000000000004

SCIENTIFIC NOTATION
Floating-point literals support scientific notation, with
the letter or taking the place of " "E e ×10...

>>> 1e-3

0.001

>>> 500e-2

5.0

>>> 0.115e1

1.15

>>> 1e-9

1e-09

>>> 1e-3

COMPLEX LITERALS
Complex numbers are also supported. The Python
notation for the imaginary unit is , but it cannot stand
on its own; it must be preceded by a floating-point
literal:

j

>>> j

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'j' is not defined

>>> 1j

1j

>>> 2j+1

(1+2j)

>>> 1j * 1j

(-1+0j)

>>> 0.1 - 0.2j + 0.5 - 0.9j

(0.6-1.1j)

VALUES AND TYPES
Every value we work with in Python has a type. You
can determine the type using the built-in:

str means string, a sequence of characters

int means integer

float means floating-point number

type()

>>> type("Hello world!")

<class 'str'>

>>> type(77)

<class 'int'>

>>> type(0.1)

<class 'float'>

complex means floating-point complex number

Note how 77 is different from 77.0

Note how (in quotes) is different from :

>>> type(1j)

<class 'complex'>

>>> type(77.0)

<class 'float'>

"0.1" 0.1

>>> type("0.1")

<class 'str'>

Notice that the result of some arithmetic operations
can be of a different type than the operands.

>>> 5/2

2.5

>>> type(5)

<class 'int'>

>>> type(2)

<class 'int'>

>>> type(5/2)

<class 'float'>

PRINTING
The function is used to print values to the
terminal. It can accept any number of values, of any
types.

The basic syntax is
.

print()

print(val1, val2, val3, ...)

>>> print("The decimal value of binary 1001 is",0b1001)

The decimal value of binary 1001 is 9

>>> print("The sum of",99,"and",0b10,"is",99+0b10)

The sum of 99 and 2 is 101

>>> print(1,1.0,1+0j)

1 1.0 (1+0j)

>>>

When multiple values are given, separates
them with a space by default.

A�er it is finished printing, the cursor is moved to the
next line by printing a special "newline" character.

print()

CUSTOMIZING PRINT
Separators and end-of-line behavior can be changed,
e.g. use no separator at all:

Use a longer string as a separator:

No newline at the end:

>>> print(1,2,3,sep="")

123

>>>

>>> print(1,2,3,4,sep="potato")

1potato2potato3potato4

>>>

>>> print(1,2,3,end="")

1 2 3>>>

There's a lot more to say about printing; we'll come
back to this in a later lecture.

REFERENCES
Most of this material is discussed in .

ACKNOWLEDGEMENTS
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2021-08-24 Initial publication

Sections 1.4-1.5 of Downey

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/thinkpython2002.html#sec9
http://homepages.math.uic.edu/~jan/

