LECTURE 20

MORE ON FUNCTIONS,
ARGUMENTS, AND ASSIGNMENT

MCS 260 Fall 2021
David Dumas

REM

INDERS

e Project 2 due 6pm central today

Project 2 solution will

be posted next Friday

Homework 7 posted, ¢

ue 10am Tue

TERMINAL

| unified the "mini-terminal" examples from the 10am
and 2pm lecturesin terminal.py.

CRITICISMS

It's a good start, but:

e Adding a new command requires a new elif
e Listofall commands (e.g.for help) must be
manually updated

FUNCTIONS ARE VALUES

~unctions are values in Python, just like float, int, etc.
~unctions can be assigned to variables, used as
parameters, stored in lists, used as keys or values

RETURNING MULTIPLE VALUES

def sumprod(x,Vy):
"""Return the sum and product of two numbers"""
return x+y, Xx*y

s,p = sumprod(5, 8)
now s==13 and p==40

WHY THIS WORKS

A comma separated list (either bare or in parentheses)
in Python is a tuple.

Tuples are like lists but immutable. They are iterable.

Tuple assighment lets you assign an iterable of values
to a tuple of names as

name(0, namel, name?2 = value(O, valuel, value?2
name(O, namel, name?2 = L # if L has length 3

EXAMPLE: SWAP

x =19
y = 52
X,y = y,x # swap their values!

In other languages you would need a temporary place
to store one of the values.

RETURNING MULTIPLE VALUES?

def sumprod(x,Vy):
"""Return the sum and product of two numbers"""
return x+y, Xx*y

s,p = sumprod(5, 8)
now s==13 and p==40

From Python's perspective, sumprod returns one
value (a tuple), and then tuple assignment stores
thosein s and p, respectively.

VARIADIC FUNCTIONS

A Python function can indicate that it will accept
however many arguments the caller decides to give it:

def f(x,y,*args):
"""function that accepts 2 or more arguments"""
body of function here
probably examine len(args) and args[i], i=0,1, ...

This example requires at least 2 arguments, but allows
more. Arguments 3 and on are "packed" into a tuple
called args.

ARGUMENT UNPACKING

Conversely, what if you know all the arguments you
want to give a function, but they are in a list rather
than separate variables?

L = ["Users","ddumas", "teaching", "mcs260", "example.py"]
os.path.join (L) # FAILS

Use * to tell Python to unpack the list (or other
iterable) into separate arguments:

L = ["Users","ddumas", "teaching", "mcs260", "example.py"]
os.path.join(*L) # equivalent to os.path.join(L[O0],L[1],...)

WRONG NUMBER OF
ARGUMENTS

If you pass a function a number of arguments that it
cannot accept, it raises TypeError. E.g.

def f(x,vy,*args):
print ()

def g (x):
print ()

) # TypeError
1) # TypeError
1,) # OK
1,2,3) # OK

Fh Hh Fh Fh

(
(
(
(

g () # TypeError

BACK TO THE MINI-TERMINAL

Let's unify the many similar if/elif in our terminal
example as follows:

e Make a dictionary to store all the commands

e Keysare command names

e Values are functions that perform the actions

e Main loop uses the command name to look up the
right function to call. No if/elif/elif/...

REVISION HISTORY

e 2021-10-08 Initial publication

