
LECTURE 39
THREADS AND CONCURRENCY

MCS 260 Fall 2021

David Dumas

REMINDERS
Project 4 autograder open

Worksheet 14 and solutions available

Homework 14 coming tomorrow, due Tue Nov 30

No lab tomorrow - replaced by Johnny's office hours

Kylash has extra office hours Wed 12-2

No synchronous lecture Wed; will post video instead

Concurrency — The ability to have several
independent operations underway at the same time
Parallelism — The ability to have several
independent operations running at the same time

Thus parallelism is one way to achieve concurrency.
Pausing and switching is another way.

E.g. a single person has very limited parallelism, but
can often handle extensive concurrency.

PROCESSES
A process is the notion of one instance of a running
program, consisting of code and data loaded into
memory, ready for the CPU to execute.

A process can't (normally) access the memory of other
processes.

Process management and scheduling is an important
OS function.

THREADS
A thread is a division within a process. Each thread
executes concurrently with the others.

Each process has at least one thread.

E.g. One thread handles the GUI, another handles
communication with APIs. The GUI remains responsive
even if an API call is slow.

Key: Threads of a single process share memory space,
i.e. code and data.

CPUS AND CORES
A modern CPU typically contains multiple cores. For
most purposes these behave as separate CPUs
running in parallel.

Thus most CPUs run several processes or threads in
parallel.

SINGLE-THREADED PROCESS

Sequential execution
Note: The animation above won't play in PDF slides.

MULTI-THREADED PROCESS
(THEORY)

Parallel execution

Note: The animation above won't play in PDF slides.

MULTI-THREADED PROCESS
(PYTHON)

Concurrent execution

Note: The animation above won't play in PDF slides.

Big limitation: Only one thread of a Python program
can be executing Python code at any given time.

Still, using threads for concurrency can be very useful,
especially in GUI programs.

Threads of a single program often need to
communicate; we'll talk about this a bit later.

BASIC THREAD EXAMPLE
The module allows a Python program to
create new threads.

Let's make a program with two threads that each print
some data to the terminal.

To make a thread, subclass threading.Thread
and put code for the thread in method .run().
Instantiate and call .start() to launch the thread.

threading

https://docs.python.org/3/library/threading.html

OBSERVATIONS
The program exits when its last thread is done.

We have no direct control over order of execution in
different threads.

WAITING AND DAEMONS
A threading.Thread object has a method
.join() which tells the calling thread to wait until
the other thread is finished.

Alternatively, a daemon thread is one that is
automatically killed when the main thread exits.
Create one by passing daemon=True to the
threading.Thread constructor.

WORKER PATTERN
Often, the main thread spawns some worker threads
to handle slow tasks in the background.

The main thread sends jobs to the workers, and may
wait for results to be returned.

This is also called the producer-consumer pattern.

THREAD COMMUNICATION
If multiple threads access the same object, with at
least one of them writing, you're asking for trouble.

Instead of directly accessing a shared object, you
should use a data structure designed for
communication between threads.

queue.Queue from the module does this. It
has a .put(val) method to submit an object to the
queue, and a .get() method to retrieve an object.

queue

https://docs.python.org/3/library/queue.html

REFERENCES
Python module documentation:

Section 6.6 of the optional course text by Brookshear & Brylow discusses threading and
concurrency

 by Jim Anderson (from RealPython)

REVISION HISTORY
2021-11-22 Initial publication

threading
queue

A tutorial on concurrency

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/queue.html
https://realpython.com/python-concurrency/

