
LECTURE 8
LIST METHODS AND COMPREHENSIONS

MCS 260 Fall 2021
David Dumas

REMINDERS
Worksheet 3 solutions posted

Homework 3 posted (due Tues 10am)

Project 1 due Fri Sep 17 at 6pm CDT

PROJECT 1 DISCUSSION
321, 174, 258, 385, 448, 480, 496, 612, 414, ...

ITERABLES
Recall a thing that can appear in a for loop in Python is
called an iterable. So iterables include:

Sequences (strings, lists, tuples*)
,

Other built-in types we'll discuss soon (dict, set)
range(...) enumerate(...)

LIST METHODS
Lists in Python have many useful features we haven't
talked about.

Any list, say , comes with its own set of functions
(called methods) that operate directly on the list.

All except change the list.

L

L.append(x) # Add x to the end of the list

L.insert(i,x) # Insert x at position i

L.remove(x) # Remove first instance of x in L

L.pop() # Remove and return the last item of L

L.index(x) # Find x in L, return its index

index()

Example: Suppose is a list of strings representing
integers, and we need to convert it to a list of ints.

A for loop can be used to do this:

This pattern is very common: Iterate over a list doing
something to each element, producing a new list.

L
M

L = ["42", "16", "15", "8", "4"]

M = []

for s in L:

 M.append(int(s))

now M == [42, 16, 15, 8, 4]

This pattern is so common that Python has a more
compact way of writing it. The code:

Can instead be written:

The expression is called
a list comprehension. It is a compact way of writing a
common type of for loop.

M = []

for s in L:

 M.append(int(s))

M = [int(s) for s in L]

[... for ... in ...]

COMPREHENSION EXAMPLES
The basic comprehension syntax is:

For example:

[expression for varname in iterable]

[x**2 for x in range(5)]

Gives [0, 1, 4, 9, 16]

[s[1:] for s in ["cat", "spot", "blot"]]

Gives ["at", "pot", "lot"]

[float(s[:-1]) for s in ["6C", "12.5C", "25C"]]

Gives [6.0, 12.5, 25.0]

The variable name in a comprehension can be anything,
it just needs to be used consistently.

These are all equivalent:

The name in a comprehension is not assigned to
anything outside the comprehension:

[x**2 for x in range(5)]

[t**2 for t in range(5)]

[apple**2 for apple in range(5)]

>>> [x**2 for x in range(5)]

[0, 1, 4, 9, 16]

>>> x

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

FILTERING
There is another common type of for loop, where
elements are not just transformed but also �ltered.

This too can be done in a comprehension:

The general form is

words = ["alpha", "bridge", "assemble", "question"]

a_words = []

for s in words:

 if s[0] == "a":

 a_words.append(s)

Now a_words is ["alpha", "assemble"]

a_words = [s for s in words if s[0]=="a"]

[expression for name in iterable if condition]

FILTERING EXAMPLES
Consider:

In words: Start with the integers , consider only
the ones that are not equal to , and for each of those,
add the number to its square. Make a list of the results.

[x+x**2 for x in range(5) if x!=2]

0 … 4

2

range(5) gives [0, 1, 2, 3, 4]

!=2 gives [0, 1, 3, 4]

add to square gives [0+0, 1+1, 3+9, 4+16]

Final result:

[0, 2, 12, 20]

A list of lists of names and salutations:

Tip: as we do here, lists can be split between lines.
Indenting is not required.

What if we want a greeting (as salutation name) of the
people with salutation "Ms."?

namepairs = [["Mr.","Nabil Weber"],

 ["Ms.","Janet Leon"],

 ["Ms.","Mariana Wang"],

 ["Dr.","Lisa Young"]]

[sal+" "+name for sal,name in namepairs if sal=="Ms."]

Gives ["Ms. Janet Leon","Ms. Mariana Wang"]

Equivalent for loop:
mss = []

for sal,name in namepairs:

 if sal=="Ms.":

 mss.append(sal+" "+name)

Convert every digit from the input string to an int, and
make a list of these:

If the keyboard input is ,
then the above will evaluate to

[int(c) for c in input() if c in "0123456789"]

I like 0 more than 157

[0, 1, 5, 7]

REFERENCES
In :

 discusses list comprehensions

REVISION HISTORY
2021-09-09 Initial publication

Downey
Section 19.2

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2020.html#sec224

